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1 Introduction

Smartphones have proven their usefulness for infrastructure health monitoring applications [1]. Smart-
phones are ubiquitous nowadays and smartwatches are becoming an accepted accessory for people in
their everyday lives. Smartwatches are packed with a wide variety of sensors too, such as location, pres-
sure, heartbeat, accelerometer and gyroscope. This poses an interesting opportunity, instead of using
smartphones to collect data to monitor infrastructure health the smartwatch could also be used to col-
lect this data. This whitepaper describes a feasibility study to determine if sensor data collected using a
smartwatch has the same potential as smartphone sensor data for infrastructure health monitoring ap-
plications. To make this comparison the road roughness has been chosen as a simple metric to compare
the two devices.

The section hereafter describes the experimental set-up and the methodology, after this a section is
dedicated to the processing and visualisation of the data. The remaining two section discuss the results
and finally a conclusion and recommendations are given.

2 Experimental set-up

As a simple metric to quantify road roughness the accelerometer data from each smart device is collected,
this accelerometer data contains the magnitude of acceleration in x,y, and z-axis of the device. Location
data was only collected on the smartphone and is returned as a latitude and a longitude. The smartwatch
available for this research was the Huawei Watch 2 LEO-BX9 running Wear OS 2.6, the smartphone
available was the Moto G5 running Android 7.0. To our best knowledge no existing apps or software could
be found which was capable of logging data from the smartwatch and the smartphone simultaneously
together with a unified timestamp. Hence custom Android apps have been developed for both devices
which are capable of this task. Data collected on the smartwatch is send to the smartphone in batches
using Bluetooth. Each sensor data sample event has a corresponding timestamp, this timestamp has
ns resolution and measures the time since the device has been powered on. These timestamps are
converted to the actual system time, which is the number of milliseconds since the epoch. Downside
of this conversion is the loss of resolution, in our case this loss is still acceptable as the maximum
sampling frequency is not that high. Accelerometer data on both devices is sampled with a frequency of
approximately 100 Hz. Location data on the smartphone is sampled with a frequency of approximately
1 Hz. Both sampling frequencies are approximations as the Android system does not guarantee sensor
data is sampled at the exact requested sampling rate.

As the author is an avid cyclist it was opted to use the bicycle to collect data. The smartphone was
fixed to the top-tube of the bicycle using a hapo-G waterproof phone mount. Extra padding was added
to this phone mount to prevent the phone sliding around in the mount. The bicycle does not have any
front suspension and has a standard wheel size of 28 inch. The smartwatch was worn on the left wrist
during data collection. A small round-trip within the city of Enschede, The Netherlands with a variety
of road surfaces has been cycled and the corresponding data has been collected.

3 Data processing and visualisation

The location data is resampled into 5s intervals, for each interval the corresponding accelerometer data
is retrieved for both smartwatch and smartphone. The standard deviation of the z-component of the
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accelerometer data during these 5s intervals is used as a metric for road roughness. Using Python in
combination with the folium library 1 the interval its location and corresponding roughness metric are
overlayed on a map. The map data is supplied by OpenStreetMap. The magnitude of the roughness
is mapped to a linear colourmap, this is automatically done by the folium.features.ColorLine()

function. To avoid extreme values disrupting the linear colourmap too much data values below the 2.5th

and above 97.5th percentile are clipped.

4 Results

The road roughness metric from both devices overlayed on top of a map can be seen in Figure 1. A
green colour indicates a smooth road surface and this colour changes gradually to red which indicates a
very rough road surface. In general a high similarity can be seen between the two visualisation, at closer
inspection there are some noticeable differences. For instance the straight road segment starting at the
Varviksingel and going down in the south-west direction shows a noticeable difference, an impression
of this road segment is shown in Figure 2b. This road segments show a higher roughness value for the
smartwatch when compared to the smartphone, this could be caused by the fact that shocks are more
evident at the steering wheel compared to the top-tube.

Figure 1: Road roughness visualised, smartphone (left) and smartwatch(right)

To give the reader an impression how the visualised road roughness corresponds to the type of
road several images have been taken from Google Street View and are shown alongside the map with
the corresponding road segment encircled. These results can be seen in Figure 2. The collected data
does not only contain information about road roughness, but it also contains information about road
structures. For instance Figure 2d shows a speed-bump.

5 Conclusion

This preliminary research has compared accelerometer data collected from both smartwatch and smart-
phone and has found high similarity between both devices. This leads to the idea that smartwatch data
is a good candidate for monitoring infrastructure health as well.

5.1 Recommendations

Besides accelerometer sensors both devices are equipped with a large number of other sensors, for instance
a gyroscope can be found on both devices as well. Future research could focus on fusing different sensor

1https://github.com/python-visualization/folium
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(a) Willem de Clercqstraat (b) Haaksbergerstraat

(c) Wethouder Elhorststraat (d) Ruwebosweg (speed-bump)

Figure 2: Encircled road segments and their corresponding Google Street View views

data to get a better metric for infrastructure health. At present the location data is only sourced from
the smartphone, it is worthwhile to investigate if this data can be combined with location data from the
smartwatch to increase location accuracy.

Instead of visual comparison a better approach would be to quantify this similarity. As the data is
from two different sources a good method to normalise the data has to be applied. At present the data
is clipped and a linear colourmap is used, instead of clipping a non-linear colourmap could be used.

Smartwatch accelerometer data is likely to contain more anomalies due to user gestures, for instance
indicating a turn by sticking out the hand. Methodologies need to be developed to cope with these
anomalies. Further research could focus on the application of machine learning to classify road surface
types, e.g. asphalt or cobblestones. If the data is labelled with high spatial precision it might even be
possible to classify certain road structures such as speed-bumps and railway crossings.
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